精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x-2y+1=0,直线l:y=kx,且l与C相交于P、Q两点,点M(0,b),且MP⊥MQ.
(Ⅰ)当b=1时,求k的值;
(Ⅱ)当b∈(1,),求k的取值范围.
【答案】分析:(Ⅰ)当b=1时,点M(0,b)在圆C上,当且仅当直线l经过圆心C时,满足MP⊥MQ.把圆心坐标(1,1)代入直线l:y=kx,可得k的值.
(Ⅱ)把直线l的方程代入圆的方程转化为关于x的一元二次方程,利用根与系数的关系以及,求得.令,则f(b)
在区间上单调递增,求得,可得 ,解此不等式求得k的取值范围(注意检验△>0).
解答:解:(Ⅰ)圆C:(x-1)2+(y-1)2=1,当b=1时,点M(0,b)在圆C上,
当且仅当直线l经过圆心C时,满足MP⊥MQ.…(2分)
∵圆心C的坐标为(1,1),∴k=1.…(4分)
(Ⅱ)由 ,消去y得:(1+k2)x2-2(1+k)x+1=0.①
设P(x1,y1),Q(x2,y2),
.…(6分)
∵MP⊥MQ,∴
∴(x1,y1-b)•(x2,y2-b)=0,即 x1x2+(y1-b)(y2-b)=0.
∵y1=kx1,y2=kx2
∴(kx1-b)(kx2-b)+x1x2=0,即.…(8分)
,即
,则f(b)在区间上单调递增.
∴当时,.…(11分)

,解得
.…(13分)
由①式得△=[2(1+k)]2-4(1+k2)>0,解得k>0.
,或
∴k的取值范围是.…(14分)
点评:本题主要考查直线和圆相交的性质,一元二次方程根与系数的关系,利用函数的单调性求函数的值域,一元二次不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案