精英家教网 > 高中数学 > 题目详情

如果x1,x2,x3,x4,x5的平均数是a,则x1,x2,x3,x4,x5的平均数为________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果5个数x1,x2,x3,x4,x5的平均数是7,那么x1+1,x2+1,x3+1,x4+1,x5+1这5个数的平均数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=asinx+bcosx+c
(1)当b=0时,求g(x)的值域;
(2)当a=1,c=0时,函数g(x)的图象关于x=
3
对称,求函数y=bsinx+acosx的对称轴.
(3)若g(x)图象上有一个最低点(
11π
6
,1)
,如果图象上每点纵坐标不变,横坐标缩短到原来的
3
π
倍,然后向左平移1个单位可得y=f(x)的图象,又知f(x)=3的所有正根从小到大依次为x1,x2,x3,…,xn,…,且xn-xn-1=3(n≥2),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)定义域为D的函数f(x),如果对于区间I内(I⊆D)的任意两个数x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,则称此函数在区间I上是“凸函数”.
(1)判断函数f(x)=-x2在R上是否是“凸函数”,并证明你的结论;
(2)如果函数f(x)=x2+
a
x
在区间[1,2]上是“凸函数”,求实数a的取值范围;
(3)对于区间[c,d]上的“凸函数”f(x),在[c,d]上的任取x1,x2,x3,…,x2n,证明:f(
x1+x2+…+x2n
2n
)≥
1
2n
[f(x1)+f(x2)+…+f(x2n)]

查看答案和解析>>

科目:高中数学 来源: 题型:044

fxab内连续。如果x1£x2£x3££xnab内的任意n点。

求证:在[x1xn]上至少存在一点ξ,使得

 

查看答案和解析>>

同步练习册答案