精英家教网 > 高中数学 > 题目详情

若等比数列{an}的前n项和Sn=2·3n+a (a为常数),则a=________.

-3
解:因为等比数列{an}的前n项和Sn=2·3n+a,则
解:因为数列{an}的前n项和Sn=3•2n+k,所以S1=6+k,S2=12+k,S3=24+k,
又因为a1=s1,a2=s2-s1,a3=s3-s2,所以a1=6+k,a2=6,a3=12
根据数列{an}是等比数列,可知a1a3=a22,所以(6+k)×12=62,解得,k=-3.
故答案为-3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和S n=3×2n+a(a为常数),则
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
=
3(4n-1)
3(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和为Sn,a2=6,S3=21,则公比q=
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设有数列{an},若存在M>0,使得对一切自然数n,都有|an|<M成立,则称数列{an}有界,下列结论中:
①数列{an}中,an=
1n
,则数列{an}有界;
②等差数列一定不会有界;
③若等比数列{an}的公比满足0<q<1,则{an}有界;
④等比数列{an}的公比满足0<q<1,前n项和记为Sn,则{Sn}有界.
其中一定正确的结论有
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前项n和为Sn,且
S4
S2
=5,则
S8
S4
=
 

查看答案和解析>>

同步练习册答案