精英家教网 > 高中数学 > 题目详情
已知数列…,,…(a>0,b>0且a≠1),

(1)求证:该数列是等比数列;

(2)当b为何值时,这个数列既是等差数列又是等比数列?

(1)证明:(常数),∴数列{}为等比数列.

(2)解:b,∴(n+1)logab=nlogab,∴logab=0.∴b=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a,b,c是各项均为正数的等差数列,公差为d(d>0).在a,b之间和b,c之间共插入n个实数,使得这n+3个数构成等比数列,其公比为q.
(1)求证:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n个数中,有s个位于a,b之间,t个位于b,c之间,且s,t都为奇数,试比较s与t的大小,并求插入的n个数的乘积(用a,c,n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a,b,c为各项都是正数的等差数列,公差为d(d>0),在a,b之间和b,c之间共插入m个实数后,所得到的m+3个数所组成的数列{an}是等比数列,其公比为q.
(1)若a=1,m=1,求公差d;
(2)若在a,b之间和b,c之间所插入数的个数均为奇数,求所插入的m个数的乘积(用a,c,m表示),求证:q是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列A:a1,a2,…,an(n≥3),令TA={x|x=ai+aj.1≤i<j≤n},car(TA)表示集合TA中元索的个数.
①若A:2,4,8,16,则card(TA)=
6
6

②若ai+1-ai=c(c为非零常数.1≤i≤n-1),则card(TA)=
2n-3
2n-3

查看答案和解析>>

同步练习册答案