精英家教网 > 高中数学 > 题目详情

如图,在底面为直角梯形的四棱锥P﹣ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.
AD=1, ,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC上, ,若DE∥面PAB,求λ的值.

解:(1)∵∠DAB=90°,AD=1,AB= ,
∴BD=2,∠ABD=30°,
∵BC∥AD
∴∠DBC=60°,BC=4,
由余弦定理得DC=2 ,
BC2=DB2+DC2,∴BD⊥DC,
∵PD⊥面ABCD,∴BD⊥PD,PD∩CD=D,∴BD⊥面PDC,
∵PC在面PDC内,∴BD⊥PC
(2)在底面ABCD内过D作直线DF∥AB,交BC于F,分别以DA、DF、DP为x、y、z轴建立如图空间坐标系,
由(1)知BD⊥面PDC,∴ 就是面PDC的法向量,
A(1,0,0),B(1,,0),P(0,0,a)=(0,,0),=(1,,0),
设AB与面PDC所成角大小为θ,sinθ==
∵θ∈(0,)∴θ=
(3)在(2)中的空间坐标系中A(1,0,0),B(1,,0),P(0,0,a),
C(﹣3,,0),=(﹣3,,﹣a),=(﹣3λ,λ,﹣aλ),
=+=(0,0,a)+(﹣3λ,λ,﹣aλ)=(﹣3λ,λ,a﹣aλ)
=(0,,0),=(1,0,﹣a),
=(x,y,z)为面PAB的法向量,
=0,得y=0,
=0,得x﹣az=0,取x=a,z=1,=(a,0,1),
由DE∥面PAB得:
=0,﹣3aλ+a﹣aλ=0,∴λ=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津一中高三(下)第二次月考数学试卷(理科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省五市高三第一次联考数学试卷(文科)(解析版) 题型:解答题

如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

同步练习册答案