精英家教网 > 高中数学 > 题目详情

方程的条件下解有        个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x 2+ax+a
x
,且a<1.
(1)当x∈[1,+∞)时,判断f(x)的单调性并证明;
(2)在(1)的条件下,若m满足f(3m)>f(5-2m),试确定m的取值范围.
(3)设函数g(x)=x•f(x)+|x2-1|+(k-a)x-a,k为常数.若关于x的方程g(x)=0在(0,2)上有两个解x1,x2,求k的取值范围,并比较
1
x1
+
1
x2
与4的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=a|x|+
2
ax
(a>0,a≠1)

(Ⅰ)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(Ⅱ)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
(2)已知函数f(x)=lnx-mx+m,m∈R.
(I)求函数f(x)的单调区间;
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,任意的0<a<b,求证:
f(b)-f(a)
a-b
1
a(1+a)
.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2成立.
已知函数g(x)=x2与h(x)=a&•2x-1是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数a的值;
(3)在(2)的条件下,讨论方程g(2x-1)+h(x)=m(m∈R)解的个数情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2
(1)若a=3,求函数f(x)的极大值和极小值;
(2)在(1)的条件下,当k满足什么条件时,方程f(x)+k=0只有两个解;
(3)若函数f(x)的图象的切线过点(0,1),且过该点的切线有两点,求实数a的值.

查看答案和解析>>

同步练习册答案