精英家教网 > 高中数学 > 题目详情

若函数f(x)对任意实数x,y满足:f(x+y)=f(x)+f(y),且f(2)=0,则下列结论正确的是________.
①f(x)是周期函数;②f(x)是奇函数;③f(x)关于点(1,0)对称;④f(x)关于直线x=1对称.

解:根据题意,依次分析4个命题:
对于①,在f(x+y)=f(x)+f(y)中,令y=2,有f(x+2)=f(x)+f(2),又由f(2)=0,则f(x+2)=f(x),可得f(x)是周期函数,故①正确;
对于②,在f(x+y)=f(x)+f(y)中,令x=y=0,有f(0)=f(0)+f(0),可得f(0)=0,再令y=-x,有f(0)=f(x)+f(-x),即f(x)=-f(-x),可得f(x)是奇函数,故②正确;
对于③,由①可得f(x+2)=f(x),又由②可得f(x)=-f(-x),则有f(x+2)=-f(-x),即f(x)关于点(1,0)对称,③正确;
对于④,由③可得,f(x)关于点(1,0)对称,则f(x)不会关于直线x=1对称,④错误;
故答案为①②③.
分析:根据题意,依次分析4个命题:对于①,令y=2,有f(x+2)=f(x)+f(2),又由f(2)=0,则f(x+2)=f(x),由函数的周期性的定义可得①正确;对于②,令x=y=0,有f(0)=f(0)+f(0),可得f(0)=0,再令y=-x,有f(0)=f(x)+f(-x),即f(x)=-f(-x),由奇函数的定义可得②正确;对于③,由①可得f(x+2)=f(x),又由②可得f(x)=-f(-x),则有f(x+2)=-f(-x),由函数的对称性可得③正确;对于④,由③可得④错误;综合可得答案.
点评:本题考查抽象函数的运用,涉及函数周期性、奇偶性、对称性的判断,解此类题目,一般用特殊值法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)对任意自然数x,y均满足:f(x+y2)=f(x)+2[f(y)]2,且f(1)≠0则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

4、若函数f(x)对任意实数x都有f(x)<f(x+1),那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2-f(x1))|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.下列函数是实数集R上的“平缓函数”的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”,
(1)判断g(x)=sinx和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有 |xn+1-xn|≤
1
(2n+1)2
,设yn=sinxn,求证:|yn+1-y1|<
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1,a2,a3分别是表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 6 4 14
第三行 9 8 18
(1)求数列{an}的通项公式;
(2)若函数f(x)对任意的x∈R都有f(x)+f(1-x)=1,数列{bn}满足bn=f(0)+f(
1
n
)+f(
2
n
)+…
+f(
n-1
n
)+f(1)
,设cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案