精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式+数学公式的定义域为________.

(-1,1)∪(1,2]
分析:本题考查的知识点是函数的定义域及其求法,根据函数的定义为使函数f(x)=+的解析式有意义的自变量x取值范围,我们可以构造关于自变量x的不等式,解不等式即可得到答案.
解答:要使函数f(x)=+的解析式有意义,
自变量x需满足
解得:-1<x<1或1<x≤2
故答案为:(-1,1)∪(1,2]
点评:求函数的定义域时要注意:(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f 下的量“x”“x+a”“x-a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若任意直线l过点F(0,1),且与函数f(x)=
1
4
x2
的图象C交于两个不同的点A,B,分别过点A,B作C的切线,两切线交于点M,证明:点M的纵坐标是一个定值,并求出这个定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求实数a的取值范围;
(3)求证:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e为无理数,约为2.71828).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且数学公式
①若a1≥3,求证:an≥n+2;
②若a1=4,试比较数学公式数学公式的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省南充高中高三第六次月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且
①若a1≥3,求证:an≥n+2;
②若a1=4,试比较的大小,并说明你的理由.

查看答案和解析>>

同步练习册答案