精英家教网 > 高中数学 > 题目详情

设O点是△ABC的外心,点P满足,则点P一定是△ABC的

[  ]

A.重心

B.垂心

C.内心

D.外心

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设O是平面ABC外一点,点M满足条件
OM
=
3
4
OA
+
1
8
OB
+
1
8
OC
,则直线AM(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M=
10
k1
表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足
sinB+sinC
sinA
=
2-cosB-cosC
cosA

(1)证明:b+c=2a;
(2)如图,点O是△ABC外一点,设∠AOB=θ(0<θ<π),OA=2OB=2,当b=c时,求平面四边形OACB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足
PA
PB
=
c
b
PA
PC
+
b-c
b
PA2
(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:
①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;
②若QA=QP,则
QP
PB
=
QP
PC

③若QA>QP,∠BAC=90°,则
BP
CP
=
AB
AC

④若QA>QP,则P在△ABC内部的概率为
S△ABC
S⊙O
(S△ABC,S⊙O分别表示△ABC与⊙O的面积).
其中不正确的命题有
 
(写出所有不正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M=
10
k1
表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明
x
+
y
+
z
1
2R
a2+b2+c2
精英家教网

查看答案和解析>>

同步练习册答案