精英家教网 > 高中数学 > 题目详情
设a1,a2, …,an都是正数,b1,b2, …,bn是a1,a2, …,an的任一排列,求证:a12b1-1+a22b2-1+…+an2bn-1≥a1+a2+…+an.

思路分析:设定a1,a2,…,an的大小,找到两个数组,利用排序原理可证得.

证明:设a1≥a2≥…≥an>0,

可知a12≥a22≥…≥an2,an-1≥an-1-1≥…≥a1-1.

由排序原理,得

a12b1-1+a22b2-1+…+an2bn-1≥a12a1-1+a22a2-1+an2an-1

即a12b1-1+a22b2-1+…+an2bn-1≥a1+a2+…+an.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,S1=a1bn+a2bn-1+…+anb1,S2=a1b1+a2b2+…+anbn,则下面正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个不同的点(n∈N*,k、b均为非零常数),其中数列{xn}为等差数列.
(1)求证:数列{yn}是等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求证:a1+a2=1;
(3)设a1+a2+…+an=1,且当i+j=n+1时,恒有ai=aj(i和j都是不大于n的正整数,且i≠j).试探索:在直线l上是否存在这样的点P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)等比数列{an}的各项均为正数,且a1+6a2=1,a22=9a1•a5,.
(I )求数列{an}的通项公式;
(Ⅱ)设a1•a2•a3…an=3
1bn
,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数组成的数组(x1,x2,x3,…,xn)满足条件:①
n
i=1
xi=0
;     ②
n
i=1
|xi|=1

(1)当n=2时,求x1,x2的值;
(2)当n=3时,求证:|3x1+2x2+x3|≤1;
(3)设a1≥a2≥a3≥…≥an,且a1>an(n≥2),求证:|
n
i=1
aixi|≤
1
2
(a1-an)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,我们称S=a1c1+a2c2+a3c3+…+ancn为两组实数的乱序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1为反序和,S2=a1b1+a2b2+a3b3+…+anbn 为顺序和.根据排序原理有:S1≤S≤S2即:反序和≤乱序和≤顺序和.给出下列命题:
①数组(2,4,6,8)和(1,3,5,7)的反序和为60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正数,则A≤B;
③设正实数a1,a2,a3的任一排列为c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值为3;
④已知正实数x1,x2,…,xn满足x1+x2+…+xn=P,P为定值,则F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值为
P
2

其中所有正确命题的序号为
①③
①③
.(把所有正确命题的序号都填上)

查看答案和解析>>

同步练习册答案