精英家教网 > 高中数学 > 题目详情

(本题满分16分)已知函数f(x)对任意实数x均有f(x)=k f(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)。

⑴求f(-1),f(2.5)的值(用k表示);

⑵写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明);

⑶求出f(x)在[-3,2]上最小值与最大值,并求出相应的自变量的取值。

 

【答案】

⑴f(-1)= k f(1)= k(-1)=-k   …………………………………………2′

   f(2.5)= f(0.5)=××(-)=- …………………………4′

   x∈[-2,0]时,x+2∈[0,2]

   ∴  f(x)= k f(x+2)= k(x+2)x  …………………………………………6′

    x∈[-3,-2)时   x+2∈[-1,0)

   ∴  f(x)= k f(x+2)= k2(x+4)(x+2)……………………………………8′

   ∴  f(x)=

   ⑵f(x)在[-3,-1]上单调增,在[1, 2] 单调增

      在[-1, 1]上单调减    ……………………………………………………12′

   ⑶x=-1,f(x)max=-k     ……………………………………………………13′

     k=-1,f(x)min=-1,此时x=1或x=-3   …………………………………14′

     k<-1时,f(x)min=-k2,此时x=-3     …………………………………15′

    -1<k<0时,f(x)min=-1,此时x=1       …………………………………16′

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题

(本题满分16分)
已知函数,且对任意,有.
(1)求
(2)已知在区间(0,1)上为单调函数,求实的取值范围.
(3)讨论函数的零点个数?(提示)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数为实常数).

(I)当时,求函数上的最小值;

(Ⅱ)若方程在区间上有解,求实数的取值范围;

(Ⅲ)证明:

(参考数据:

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题

(本题满分16分) 已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

 ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数是定义在上的偶函数,且当时,

(Ⅰ)求的值;

(Ⅱ)求函数上的解析式;

(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案