精英家教网 > 高中数学 > 题目详情
求极限 (a3)

答案:
解析:

当|a|>3时,,原式

当|a|<3时,,原式

当a=3时,原式=0.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各极限:
(1)
lim
x→2
4
x2-4
-
1
x-2
)

(2)
lim
x→∞
(x+a)(x+b)
-x);
(3)
lim
x→0
x
|x|

(4)
lim
x→
π
2
cosx
cos
x
2
-sin
x
2
.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,
BC
的大小是
AB
大小的k倍,
BC
的方向由
AB
的方向逆时针旋转θ角得到,则我们称
AB
经过一次(θ,k)延伸得到
BC
. 已知
OA1
=(1,0)

(1)向量
OA1
经过2次(
π
2
1
2
)
延伸,分别得到向量
A1A2
A2A3
,求
A1A2
A2A3
的坐标.
(2)向量
OA1
经过n-1次(
π
2
1
2
)
延伸得到的最后一个向量
An-1An
,(n∈N*,n>1),设点An(xn,yn),求An的极限位置A(
lim
n→∞
xn
lim
n→∞
yn)

(3)向量
OA1
经过2次(θ,k)延伸得到向量
A1A2
A2A3
,其中k>0,θ∈(0,π),若
OA1
A1A2
A2A3
恰能够构成一个三角形(即A3与O重合),求θ,k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各极限:

(1)[++…+];

(2)[n(1-)·(1-)·…·(1-)];

(3)[(1+)·(1+)·(1+)·…·(1+)];

(4)(a≠-3).

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知一列非零向量a n,n∈N*,满足:a1=(10,-5), a n=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)(n≥2),其中k是非零常数.

(1)求数列{| a n|}的通项公式;

(2)求向量a n-1a n的夹角(n≥2);

(3)当k=时,把a 1, a 2,…, a n,…中所有与a 1共线的向量按原来的顺序排成一列,记为b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O为坐标原点,求点列{Bn}的极限点B的坐标.〔注:若点坐标为(tn,sn),且tn=t,sn=s,则称点B(t,s)为点列的极限点〕

(文)设函数f(x)=5x-6,g(x)=f(x).

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);

(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.

查看答案和解析>>

同步练习册答案