精英家教网 > 高中数学 > 题目详情
16.如图,海平面某区域内有A,B,C三座小岛,岛C在A的北偏东70°方向,岛C在B的北偏东40°方向,且A,B两岛间的距离为3海里.
(1)求B,C两岛间的距离;
(2)经测算海平面上一轮船D位于岛C的北偏西50°方向,且与岛C相距3$\sqrt{2}$海里,求轮船在岛A的什么位置.(注:小岛与轮船视为一点)

分析 (1)在△ABC中使用正弦定理得出BC;
(2)在△ABC中求出AC,再在△ACD中利用余弦定理求出AD,利用正弦定理求出∠DAC,得出结论.

解答 解:(1)由题意可得∠ABC=105°,∠BAC=45°,AB=3,
∴∠ACB=30°,
在△ABC中,由正弦定理得$\frac{AB}{sin∠ACB}=\frac{BC}{sin∠BAC}$,
即$\frac{3}{\frac{1}{2}}=\frac{BC}{\frac{\sqrt{2}}{2}}$,解得BC=3$\sqrt{2}$(海里).
(2)由题意可知CD=3$\sqrt{2}$,∠ACD=60°,
在△ABC中,由余弦定理得AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BC•cos∠ABC}$=3$\sqrt{2+\sqrt{3}}$,
在△ACD中,由余弦定理AD=$\sqrt{A{C}^{2}+C{D}^{2}-2AC•CDcos∠ACD}$=3$\sqrt{3}$,
由正弦定理得:$\frac{CD}{sin∠DAC}=\frac{AD}{sin∠ACD}$,即$\frac{3\sqrt{2}}{sin∠DAC}=\frac{3\sqrt{3}}{sin60°}$,
解得sin∠DAC=$\frac{\sqrt{2}}{2}$,
∴∠DAC=45°,
∴D船在A岛北偏东25°方向上,距离A岛3$\sqrt{3}$海里处.

点评 本题考查了正弦定理、余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设F1,F2分别为双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径圆上,则双曲线的离心率为(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为(  )
A.y=-4sin($\frac{πx}{8}+\frac{π}{4}$)B.y=4sin($\frac{x}{8}-\frac{π}{4}$)C.y=-4sin($\frac{x}{8}-\frac{π}{4}$)D.y=4sin($\frac{x}{8}+\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数 f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数g(x)=f($\frac{3π}{4}$-x)是(  )
A.偶函数且它的图象关于点 (π,0)对称
B.奇函数且它的图象关于点 (π,0)对称
C.奇函数且它的图象关于点($\frac{3π}{2}$,0)对称
D.偶函数且它的图象关于点($\frac{3π}{2}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线x-y=0与圆(x-2)2+y2=6相交于A,B两点,则弦AB的长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+2y+a=0过圆x2+y2+2x-4y+1=0的圆心,则实数a的值为(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在无穷数列{an}中,a1=p是正整数,且满足${a_{n+1}}=\left\{\begin{array}{l}\frac{a_n}{2},当{a_n}为偶数\\{a_n}+5,当{a_n}为奇数.\end{array}\right.$
(Ⅰ)当a3=9时,给出p的值;(结论不要求证明)
(Ⅱ)设p=7,数列{an}的前n项和为Sn,求S150
(Ⅲ)如果存在m∈N*,使得am=1,求出符合条件的p的所有值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.小明在数学课中学习了《解三角形》的内容后,欲测量河对岸的一个铁塔高AB(如图所示),他选择与塔底B在同一水平面内的两个测量点C和D,测得∠BCD=60°,∠BDC=45°,CD=30米,并在点C测得塔顶A的仰角为θ=30°.求:
(1)sin∠DBC;
(2)塔高AB(结果精确到0.01)(参考数据:$\sqrt{3}$≈1.73)

查看答案和解析>>

同步练习册答案