精英家教网 > 高中数学 > 题目详情
函数f(x)=x2-2kx+k在[0,1]上的最小值为
1
4
,则k等于
1
2
1
2
分析:由f(x)=x2-2kx+k=(x-k)2+k-k2,对称轴x=k,①当k≤0时,函数f(x)在[0,1]上单调递增,当x=0时,函数有最小值f(0);②当0<k<1时,函数f(x)在[0,k)单调递减,在(k,1]单调递增,当x=k时函数有最小值;③当k≥1时,函数f(x)在[0,1]上单调递减,当x=1时,函数有最小值f(1,结合已知可求
解答:解:∵f(x)=x2-2kx+k=(x-k)2+k-k2,对称轴x=k
①当k≤0时,函数f(x)在[0,1]上单调递增,当x=0时,函数有最小值f(0)=k=
1
4
,不符合题意
②当0<k<1时,函数f(x)在[0,k)单调递减,在(k,1]单调递增,当x=k时函数有最小值k-k2=
1
4
,解可得k=
1
2
,符合题意
③当k≥1时,函数f(x)在[0,1]上单调递减,当x=1时,函数有最小值f(1)=1-k=
1
4
,解可得k=
3
4
不符合题意
综上可得,k=
1
2

故答案为:
1
2
点评:本题主要考查了二次函数在闭区间上的最值的求解,解决此类问题的关键是确定函数在所给区间的单调性,而当单调性不确定时,需要分类讨论
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1x-1
,其图象在点(0,-1)处的切线为l.
(I)求l的方程;
(II)求与l平行的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,则f(-1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),则实数a的取值范围是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案