精英家教网 > 高中数学 > 题目详情
是否存在正整数m,使得f(n)=(2n+7)·3n+9对任意自然数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.

解:由f(n)=(2n+7)·3n+9,得f(1)=36,f(2)=3×36,f(3)=10×36,f(4)=34×36,由此猜想m=36.

    下面用数学归纳法证明:

    (1)当n=1时,显然成立.

    (2)假设n=k时,f(k)能被36整除,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,[2(k+1)+7]·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),

    由于3k-1-1是2的倍数,故18(3k-1-1)能被36整除.这就是说,当n=k+1时,f(n)也能被36整除.

    由(1)(2)可知对一切正整数n都有f(n)=(2n+7)·3n+9能被36整除,m的最大值为36.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=
1
2
Sn
+a,又a1=2,a2=1.
(1)求a的值;
(2)求Sn
(3)是否存在正整数m、n,使
Sn+1>2Sn-m
Sn+1>m
成立?若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,且a1=2,a2=1.
(1)求k的值;
(2)求Sn
(3)是否存在正整数m,n,使
Sn-m
Sn+1-m
1
2
成立?若存在,求出这样的正整数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和是Sn,已知S3=9,S6=36.
(1)求数列{an}的通项公式;
(2)是否存在正整数m、k,使am,am+5,ak成等比数列?若存在,求出m和k的值,若不存在,说明理由;
(3)设数列{bn}的通项公式为bn=3n-2.集合A={x|x=an,n∈N*},B={x|x=bn,n∈N*}.将集合A∪B中的元素从小到大依次排列,构成数列c1,c2,c3,…,求{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1、公差为2的等差数列,对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列{bn}.设Sn、Tn分别是数列{bn}和{an}的前n项和.

(1)试问a10是数列{bn}的第几项?

(2)是否存在正整数m,使Sm=2 008?若存在,求出m的值;若不存在,请说明理由.

(3)若am是数列{bn}的第f(m)项,试比较Sf(m)与2Tm的大小,并说明理由.

查看答案和解析>>

同步练习册答案