ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ù²»Îª0µÄµÈ²îÊýÁУ¬¹«²îΪd£¬SnΪÆäǰ nÏîºÍ£¬ÇÒÂú×ã
a2n
=S2n-1
£¬n¡ÊN*£®ÊýÁÐ{bn}Âú×ãbn=
1
anan+1
£¬TnΪÊýÁÐ{bn}µÄǰnÏîºÍ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽanºÍÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨2£©Èô¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽ¦ËTn£¼n+8•(-1)nºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÔÚ
a2n
=S2n-1
ÖУ¬Áîn=1£¬n=2£¬
µÃ
a12=S1
a22=S3
£¬¼´
a12=a1
(a1+d)2=3a1+3d
        ¡­£¨1·Ö£©
½âµÃa1=1£¬d=2£¬¡àan=2n-1
ÓÖ¡ßan=2n-1ʱ£¬Sn=n2Âú×ã
a2n
=S2n-1
£¬¡àan=2n-1¡­£¨2·Ö£©
¡ßbn=
1
anan+1
=
1
2
(
1
2n-1
-
1
2n+1
)
£¬
¡àTn=
1
2
£¨1-
1
3
+
1
3
-
1
5
+¡­+
1
2n-1
-
1
2n+1
£©=
n
2n+1
£®   ¡­£¨4·Ö£©
£¨2£©¢Ùµ±nΪżÊýʱ£¬ÒªÊ¹²»µÈʽ¦ËTn£¼n+8•(-1)nºã³ÉÁ¢£¬¼´Ðè²»µÈʽ¦Ë£¼
(n+8)(2n+1)
n
=2n+
8
n
+17
ºã³ÉÁ¢£®    ¡­£¨5·Ö£©
¡ß2n+
8
n
¡Ý8£¬µÈºÅÔÚn=2ʱȡµÃ£®
¡à´Ëʱ¦Ë ÐèÂú×ã¦Ë£¼25£®              ¡­£¨6·Ö£©
¢Úµ±nÎªÆæÊýʱ£¬ÒªÊ¹²»µÈʽ¦ËTn£¼n+8•(-1)nºã³ÉÁ¢£¬¼´Ðè²»µÈʽ¦Ë£¼
(n-8)(2n+1)
n
=2n-
8
n
-15
ºã³ÉÁ¢£®      ¡­£¨7·Ö£©
¡ß2n-
8
n
ÊÇËænµÄÔö´ó¶øÔö´ó£¬¡àn=1ʱ£¬2n-
8
n
È¡µÃ×îСֵ-6£®
¡à´Ëʱ¦Ë ÐèÂú×ã¦Ë£¼-21£®            ¡­£¨8·Ö£©
×ۺϢ١¢¢Ú¿ÉµÃ¦ËµÄȡֵ·¶Î§ÊǦˣ¼-21£® ¡­£¨9·Ö£©
£¨3£©T1=
1
3
£¬ Tm=
m
2m+1
£¬ Tn=
n
2n+1
£¬
ÈôT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¬Ôò(
m
2m+1
)2=
1
3
(
n
2n+1
)
£¬
¼´
m2
4m2+4m+1
=
n
6n+3
£®                           ¡­£¨10·Ö£©
ÓÉ
m2
4m2+4m+1
=
n
6n+3
£¬¿ÉµÃ
3
n
=
-2m2+4m+1
m2
£¾0
£¬¼´-2m2+4m+1£¾0£¬
¡à1-
6
2
£¼m£¼1+
6
2
£®                 ¡­£¨11·Ö£©
ÓÖm¡ÊN£¬ÇÒm£¾1£¬ËùÒÔm=2£¬´Ëʱn=12¡­£¨12·Ö£©
Òò´Ë£¬µ±ÇÒ½öµ±m=2£¬n=12ʱ£¬ÊýÁÐT1£¬Tm£¬TnÖеÄT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ®¡­£¨13·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈôÒ»¸öÊýÁи÷ÏîÈ¡µ¹Êýºó°´Ô­À´µÄ˳Ðò¹¹³ÉµÈ²îÊýÁУ¬Ôò³ÆÕâ¸öÊýÁÐΪµ÷ºÍÊýÁУ®ÒÑÖªÊýÁÐ{an}Êǵ÷ºÍÊýÁУ¬¶ÔÓÚ¸÷Ïî¶¼ÊÇÕýÊýµÄÊýÁÐ{xn}£¬Âú×ãxnan=xn+1an+1=xn+2an+2£¨n¡ÊN*£©£®
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{xn}ÊǵȱÈÊýÁУ»
£¨¢ò£©°ÑÊýÁÐ{xn}ÖÐËùÓÐÏî°´ÈçͼËùʾµÄ¹æÂÉÅųÉÒ»¸öÈý½ÇÐÎÊý±í£¬µ±x3=8£¬x7=128ʱ£¬ÇóµÚmÐи÷ÊýµÄºÍ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄÊýÁÐ{xn}£¬Ö¤Ã÷£º
n
2
-
1
3
£¼
x1-1
x2-1
+
x2-1
x3-1
+¡­+
xn-1
xn+1-1
£¼
n
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•ÄÏ»ãÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}ÖУ¬Èô2an=an-1+an+1£¨n¡ÊN*£¬n¡Ý2£©£¬ÔòÏÂÁи÷²»µÈʽÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÈôÒ»¸öÊýÁи÷ÏîÈ¡µ¹Êýºó°´Ô­À´µÄ˳Ðò¹¹³ÉµÈ²îÊýÁУ¬Ôò³ÆÕâ¸öÊýÁÐΪµ÷ºÍÊýÁУ®ÒÑÖªÊýÁÐ{an}Êǵ÷ºÍÊýÁУ¬¶ÔÓÚ¸÷Ïî¶¼ÊÇÕýÊýµÄÊýÁÐ{xn}£¬Âú×ãÊýѧ¹«Ê½£¨n¡ÊN*£©£®
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{xn}ÊǵȱÈÊýÁУ»
£¨¢ò£©°ÑÊýÁÐ{xn}ÖÐËùÓÐÏî°´ÈçͼËùʾµÄ¹æÂÉÅųÉÒ»¸öÈý½ÇÐÎÊý±í£¬µ±x3=8£¬x7=128ʱ£¬ÇóµÚmÐи÷ÊýµÄºÍ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄÊýÁÐ{xn}£¬Ö¤Ã÷£ºÊýѧ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê±±¾©Êг¯ÑôÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÈôÒ»¸öÊýÁи÷ÏîÈ¡µ¹Êýºó°´Ô­À´µÄ˳Ðò¹¹³ÉµÈ²îÊýÁУ¬Ôò³ÆÕâ¸öÊýÁÐΪµ÷ºÍÊýÁУ®ÒÑÖªÊýÁÐ{an}Êǵ÷ºÍÊýÁУ¬¶ÔÓÚ¸÷Ïî¶¼ÊÇÕýÊýµÄÊýÁÐ{xn}£¬Âú×㣨n¡ÊN*£©£®
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{xn}ÊǵȱÈÊýÁУ»
£¨¢ò£©°ÑÊýÁÐ{xn}ÖÐËùÓÐÏî°´ÈçͼËùʾµÄ¹æÂÉÅųÉÒ»¸öÈý½ÇÐÎÊý±í£¬µ±x3=8£¬x7=128ʱ£¬ÇóµÚmÐи÷ÊýµÄºÍ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄÊýÁÐ{xn}£¬Ö¤Ã÷£º£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê±±¾©Êг¯ÑôÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨ÎĿƣ©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÈôÒ»¸öÊýÁи÷ÏîÈ¡µ¹Êýºó°´Ô­À´µÄ˳Ðò¹¹³ÉµÈ²îÊýÁУ¬Ôò³ÆÕâ¸öÊýÁÐΪµ÷ºÍÊýÁУ®ÒÑÖªÊýÁÐ{an}Êǵ÷ºÍÊýÁУ¬¶ÔÓÚ¸÷Ïî¶¼ÊÇÕýÊýµÄÊýÁÐ{xn}£¬Âú×㣨n¡ÊN*£©£®
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{xn}ÊǵȱÈÊýÁУ»
£¨¢ò£©°ÑÊýÁÐ{xn}ÖÐËùÓÐÏî°´ÈçͼËùʾµÄ¹æÂÉÅųÉÒ»¸öÈý½ÇÐÎÊý±í£¬µ±x3=8£¬x7=128ʱ£¬ÇóµÚmÐи÷ÊýµÄºÍ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖеÄÊýÁÐ{xn}£¬Ö¤Ã÷£º£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸