精英家教网 > 高中数学 > 题目详情

设△的三边为满足

(Ⅰ)求的值;

(Ⅱ)求的取值范围.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

试题分析:(Ⅰ)由,即含有角又含有边,像这一类题,可以利用正弦定理把边化成角,也可利用余弦定理把角化成边,本题两种方法都行,若利用正弦定理把边化成角,利用三角恒等变化,求出角,若利用余弦定理把角化成边,利用代数恒等变化,找出边之间的关系,从而求出角;(Ⅱ)求的取值范围,首先利用降幂公式,与和角公式,利用互余,将它化为一个角的一个三角函数,从而求出范围.

试题解析:(Ⅰ),所以,所以,所以所以,即,所以,所以 

(Ⅱ)= =其中  因为,  所以  所以

考点:正余弦定理的运用,三角恒等变化,求三角函数值域,考查学生的运算能力.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,其中ω是使f(x)能在x=
π
3
处取得最大值时的最小正整数.(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a,b,c满足b2=ac且边b所对的角θ的取值集合为A,当x∈A时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)的周期为
π
2

(1)求ω的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,-cosωx),已知函数f(x)=
m
n
(ω>0)的周期为
π
2

(1)求ω的值、函数f(x)的单调递增区间、函数f(x)的零点、函数f(x)的对称轴方程;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2014届山西省高三第一学期8月月考理科数学试卷(解析版) 题型:解答题

设△的三边为满足

(Ⅰ)求的值;

(Ⅱ)求的取值范围.

 

查看答案和解析>>

同步练习册答案