若函数f(x)=
,若f(a)>f(-a),则实数a的取值范围是
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
C.(-1,0)∪(1,+∞)
D.(-∞,-1)∪(0,1)
科目:高中数学 来源: 题型:
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三第一次教学质量检测理科数学 题型:填空题
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,)上不是凸函数的是________ (把你认为正确的序号都填上)
①f(x)=sinx+cosx;②f(x)=lnx-2x;③f(x)=-x3+2x-1;④f(x)=xex
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三第一次模拟考试理科数学卷 题型:解答题
(本小题满分15分)
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河北正定中学2009届高三第四次月考(理) 题型:解答题
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com