精英家教网 > 高中数学 > 题目详情

若函数f(x)=,若f(a)>f(-a),则实数a的取值范围是

[  ]

A.(-1,0)∪(0,1)

B.(-∞,-1)∪(1,+∞)

C.(-1,0)∪(1,+∞)

D.(-∞,-1)∪(0,1)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=ax3bx2cxd是奇函数,且f(x)极小值f(-)=-.

(1)求函数f(x)的解析式;

(2)求函数f(x)在[-1,m](m>-1)上的最大值;

(3)设函数g(x)=,若不等式g(xg(2kx)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省高三第一次教学质量检测理科数学 题型:填空题

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,)上不是凸函数的是________ (把你认为正确的序号都填上)

f(x)=sinx+cosx;②f(x)=lnx-2x;③f(x)=-x3+2x-1;④f(x)=xex

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三第一次模拟考试理科数学卷 题型:解答题

(本小题满分15分)

若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.

(1)求函数f(x)的解析式;

(2)求函数f(x)在[-1,m](m>-1)上的最大值;

(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河北正定中学2009届高三第四次月考(理) 题型:解答题

 

若函数f(x)=ax3bx2cxd是奇函数,且f(x)极小值f(-)=-.

(1)求函数f(x)的解析式;

(2)求函数f(x)在[-1,m](m>-1)上的最大值;

(3)设函数g(x)=,若不等式g(xg(2kx)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

(文科)若函数f(x)的图象关于直线x=1对称,且当x>1时,f(x)=2x3-x,则当x<1时,f(x)的表达式为


  1. A.
    f(x)=2(2-x)3+x-2
  2. B.
    f(x)=2(2-x)3-x
  3. C.
    f(x)=2(1-x)3+x-1
  4. D.
    f(x)=2x3+x

查看答案和解析>>

同步练习册答案