精英家教网 > 高中数学 > 题目详情

已知函数,,,若对于任一实数的值至少有一个为正数,则实数的取值范围是             

A.(-∞,4)          B.(-∞,-4)      C.(-4,4)             D.[-4,4]

练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年江苏省宿迁市沭阳县华冲中学高三(上)9月调研数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)若对于任意的x∈R,f(x)>0恒成立,求实数k的取值范围;
(2)若f(x)的最小值为-3,求实数k的取值范围;
(3)若对于任意的x1、x2、x3,均存在以f(x1)、f(x2)、f(x3)为三边长的三角形,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省连云港市新海高级中学高三(下)3月调研数学试卷(解析版) 题型:解答题

已知函数
(1)若对于任意的x∈R,f(x)>0恒成立,求实数k的取值范围;
(2)若f(x)的最小值为-3,求实数k的取值范围;
(3)若对于任意的x1、x2、x3,均存在以f(x1)、f(x2)、f(x3)为三边长的三角形,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届贵州省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知函数定义域为,若对于任意的,都有,且时,有.

(1)求证: 为奇函数;

(2)求证: 上为单调递增函数;

(3)设,若<,对所有恒成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省温州市高一第一次月考数学试卷(解析版) 题型:解答题

已知函数定义域为,若对于任意的,都有,且>0时,有>0.

⑴证明: 为奇函数;

⑵证明: 上为单调递增函数;

⑶设=1,若<,对所有恒成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

本小题满分12分

已知函数定义域为,若对于任意的,都有,且>0时,有>0.

⑴证明: 为奇函数;

⑵证明: 上为单调递增函数;

⑶设=1,若<,对所有恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案