精英家教网 > 高中数学 > 题目详情

设A,B是椭圆上的两点,为坐标原点,向量,向量

(1)设,证明:点M在椭圆上;

(2)若点P、Q为椭圆上两点,且试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请证明理由。

(1)  又

把M点坐标代入椭圆方程左边,

∴点M在椭圆上。

(2)1.若⊥X轴,则OA在X轴上,由,∴PQ⊥X轴,∵PQ⊥X轴

∵线段PQ被直线OA平分。

2.若OB∥X轴,同理可证线段PQ被直线OA平分。

2.若不与X轴垂直或平行,设PQ方程为

   则

由①②得PQ中点在直线上,

又直线OA方程为

PQ中点在直线OA上,故线段PQ被直线OA平分。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,F1,F2是离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,直线l:x=-
1
2
将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,F1,F2是离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,直线l:x=-
1
2
将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江考试院抽学校高三11月抽测测试理科数学试卷(解析版) 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州市玉环县玉城中学高二(上)第二次月考数学试卷(4-7班)(解析版) 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年陕西师大附中高考数学四模试卷(理科)(解析版) 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

查看答案和解析>>

同步练习册答案