精英家教网 > 高中数学 > 题目详情
已知a 
1
2
-a -
1
2
=2(a>0,且a≠1),求
a
3
2
+a-
3
2
a
1
2
+a-
1
2
的值.
因为a 
1
2
-a -
1
2
=2,
所以
a
3
2
+a-
3
2
a
1
2
+a-
1
2
=
(a
1
2
+a-
1
2
)(a-1+a-1)
a
1
2
+a-
1
2

=a-1+a-1=(a
1
2
-a-
1
2
)2+1

=22+1=5.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知集合A={y|y=log2x,x≥1},B={y|y=(
12
x,x≥0},求A∩B,A∪B;
(2)已知A={x|a≤x≤a+3},B={x|x2+5x-6>0}.若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a 
1
2
-a -
1
2
=2(a>0,且a≠1),求
a
3
2
+a-
3
2
a
1
2
+a-
1
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各题:
(1)(lg5)2+lg2•lg50;
(2)已知a 
1
2
-a -
1
2
=1,求a2+a-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
,-1)
b
=(
1
2
3
2
)

(Ⅰ)若存在实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
,且
x
y
,试求函数关系式k=f(t);
(Ⅱ)根据(Ⅰ)的结论,确定k=f(t)的单调区间;
(Ⅲ)设a>0,若过点(a,b)可作曲线k=f(t)的三条切线,求证:-
3
4
a<b<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈[
1
2
,2]
,若f(x)=ax2-4x+2在区间[1,4]上最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)讨论g(a)在[
1
2
4
5
]
上的单调性;
(3)当a∈[
1
2
4
5
]
时,证明2a2+4≥g(a).

查看答案和解析>>

同步练习册答案