精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式x3-数学公式(a+1)x2+ax,g(x)=f′(x)是函数f(x)的导函数,其中实数a是不等1的常数.
(1)设a>1,讨论函数f(x)在区间[0,a+1]内零点的个数;
(2)求证:当-1<a<1时,g(x)<ex在[0,+∞)内恒成立.

解:(1)f′(x)=x2-(a+1)x+a=(x-1)(x-a)
当a>1时,函数f(x)在(-∞,1)及(a,a+1)上单调递增,在(1,a)上单调递减,
f(a+1)=-+(a+1)a=
解不等式f(a)>0,得1<a<3,解不等式f(a+1)>0,得
函数f(x)在区间[0,a+1]的零点,当1<a<3时只有一个;当a=3时有两个;当3时有三个零点,当a时有两个零点.
(2)令h(x)=g(x)-ex,z则h(0)=g(0)-1=a-1<0
我们只需证明h(x)在[0,+∞)上单调递减.
令t(x)=h′(x)=2x-(a+1)-ex,则t′(x)=2-ex,令2-ex=0得x=ln2.
∴t(x)的最大值是t(ln2)=2ln2-(a+1)-eln2=2ln2-(a+1)-2<2ln2-2<0
∴t(x)<0在[0,+∞)上恒成立
∴g(x)-ex在(0,+∞)上单调递减,g(x)<ex在[0,+∞)上恒成立.
分析:(1)先求出导数f′(x)=x2-(a+1)x+a=(x-1)(x-a),得到:当a>1时,函数f(x)在(-∞,1)及(a,a+1)上单调递增,在(1,a)上单调递减,由于f(0)=0,求出f(a+1)解不等式f(a)>0,得1<a<3,解不等式f(a+1)>0,得,从而得出函数f(x)在区间[0,a+1]内零点的个数;
(2)令h(x)=g(x)-ex,z则h(0)=g(0)-1=a-1<0,下面我们只需证明h(x)在[0,+∞)上单调递减.
令t(x)=h′(x)=2x-(a+1)-ex,求出其导数,先研究t(x)的单调性,再利用导数求解t(x)在R上的最大值问题即可,故只要先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值即得.
点评:本题考查的知识点是函数零点的判定定理,函数恒成立问题,利用导数求闭区间上的函数最值,(1)中根据已知条件构造构造关于b的不等式组是证明的关键;(2)中将不等式f(x)≤g(x)在 恒成立,转化为函数恒成立问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案