精英家教网 > 高中数学 > 题目详情
(理)若()n(n∈N*)的展开式中x-4的系数为an,则=__________.

答案:(理)2  Tr+1=(-x-2)r=(-1)rx-2r.令r=2,an==.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设0<a<1,f(logax)=
a(x2-1)(a2-1)x

(Ⅰ)求f(x)的表达式,并指出其奇偶性、单调性(不必写出证明过程);
(Ⅱ)解关于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)当n∈N时,比较f(n)与n的大小.
(文)若f(x)-4的值仅在x<2时取负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年安徽卷理)若(2x3+)n的展开式中含有常数项,则最小的正整数n等于            .

查看答案和解析>>

科目:高中数学 来源:2003年浙江省杭州二中高三月考数学试卷(解析版) 题型:解答题

设0<a<1,
(Ⅰ)求f(x)的表达式,并指出其奇偶性、单调性(不必写出证明过程);
(Ⅱ)解关于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)当n∈N时,比较f(n)与n的大小.
(文)若f(x)-4的值仅在x<2时取负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市十一校高三联考数学试卷(解析版) 题型:解答题

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

同步练习册答案