精英家教网 > 高中数学 > 题目详情

已知函数,将的图象先向右平移个单位,再向下平移2个单位后,所得到函数的图象关于直线对称.

(Ⅰ)求实数的值;

(Ⅱ)已知,求的值.

(Ⅰ)    (Ⅱ),或


解析:

(Ⅰ)由题,将的图象先向右平移个单位,再向下平移2个单位后的解析式为

的图象关于直线对称,

,即,解得 

(Ⅱ)

得:

所以,或

所以,或

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是
π
2
,若将f(x)的图象先向右平移
π
6
个单位,再向上平移
3
个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;       
(2)求f(x)的单调区间;
(3)若对任意x∈[0,
π
3
]
,f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ为锐角.f(x)的图象的两个相邻对称中心的距离为
π
2
,且当x=
π
12
时,f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)将f(x)的图象先向下平移1个单位,再向左平移?(?>0)个单位得g(x)的图象,若g(x)为奇函数,求?的最小值.

查看答案和解析>>

科目:高中数学 来源:2014届山东省济宁市高一下学期期中数学试卷(解析版) 题型:解答题

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

同步练习册答案