精英家教网 > 高中数学 > 题目详情

已知:m、n为正整数。

   (1)用数学归纳法证明:当

   (2)对于

        求证:

   (3)求出满足等式的所有正整数n.

(1)略

(2)当由(1)有

(3)由(2)得:当时,

∴只需讨论n=1,2,3,4,5时的情况,可知n=2,3时成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.
(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是
255
255

(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m,n的值分别为
8,13
8,13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为正整数,3m+n=20,则m>n的概率为
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-
5
,0),F2(
5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m+n的值为
 

查看答案和解析>>

同步练习册答案