精英家教网 > 高中数学 > 题目详情

已知函数

(1)当时,解不等式

(2)若函数有最大值,求实数的值.

 

【答案】

(1) 解集为;(2)

【解析】

试题分析:(1)一元二次不等式一般都化为的形式,然后求出一元二次方程的根(如果有的话,当然不一定具体写方程的根是什么),再写出不等式的解集.(2)二次函数有最大值,说明二次项系数为正,然后直接利用最值公式立出关于参数方程即可.二次函数的最值为(最大最小由的正负确定).

试题解析:(1)当时,有,即

解得 

不等式的解集为    6分

(2)由题意     10分

因此       12分

考点:(1)一元二次不等式的解法;(2)二次函数的最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数,其中    

(1)      当满足什么条件时,取得极值?

(2)      已知,且在区间上单调递增,试用表示出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数

(1)当a=3时,求fx)的零点;

(2)求函数yf (x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省深圳市宝安区高三上学期调研考试文科数学试卷(解析版) 题型:解答题

已知函数.

(1)当为何值时,取得最大值,并求出其最大值;

(2)若,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三5月高考三轮模拟文科数学试卷(解析版) 题型:解答题

已知函数

(1)当时,证明:对

(2)若,且存在单调递减区间,求的取值范围;

(3)数列,若存在常数,都有,则称数列有上界。已知,试判断数列是否有上界.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

已知函数

   (1)当  时,求函数  的最小值;

   (2)当  时,讨论函数  的单调性;

   (3)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案