精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系 xOy中,已知抛物线E:y2=2px(p>0)的焦点为F,P是抛物线 E上位于第一象限内的任意一点,Q是线段 PF上的点,且满足$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,则直线 OQ的斜率的最大值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.1D.$\sqrt{2}$

分析 根据向量坐标运算求得Q点坐标,根据直线的斜率公式,及基本不等式的性质即可求得直线的斜率公式.

解答 解:由抛物线E:y2=2px焦点F($\frac{p}{2}$,0),设P($\frac{{y}_{1}^{2}}{2p}$,y1),y1>0,Q(x,y),
由$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,则(x,y)=$\frac{2}{3}$($\frac{{y}_{1}^{2}}{2p}$,y1)+$\frac{1}{3}$($\frac{p}{2}$,0),
$\left\{\begin{array}{l}{x=\frac{{y}_{1}^{2}}{3p}+\frac{p}{6}}\\{y=\frac{2}{3}{y}_{1}}\end{array}\right.$,
则直线OQ的斜率k,则$\frac{1}{k}$=$\frac{x}{y}$=$\frac{\frac{{y}_{1}^{2}}{3p}+\frac{p}{6}}{\frac{2}{3}{y}_{1}}$=$\frac{2{y}_{1}^{2}+{p}^{2}}{4{y}_{1}p}$≥$\frac{2\sqrt{2}{y}_{1}p}{4{y}_{1}p}$=$\frac{\sqrt{2}}{2}$,
当且仅当$\sqrt{2}$y1=p,取等号,
∴k≤$\sqrt{2}$,
∴直线 OQ的斜率的最大值$\sqrt{2}$,
故选D.

点评 本题考查向量的坐标运算,直线的斜率公式,基本不等式的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2-x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是$0<a≤\frac{1}{2}$或a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有4人参加抽奖活动,每人依次从装有4张奖票(其中2张为中奖票)的箱子中不放回地随机抽取一张,直到2张中奖票都被抽出时活动结束,则活动恰好在第3人抽完后结束的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}$CD=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.
(Ⅰ)求证:AO⊥平面BCD;、
(Ⅱ)若三棱锥A-BEF的体积为$\frac{\sqrt{2}}{18}$,求二面角A-BE-F的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\frac{{{i^{2017}}}}{1-2i}$=(  )
A.$-\frac{2}{5}+\frac{1}{5}i$B.$\frac{2}{5}-\frac{1}{5}i$C.$\frac{2}{5}+\frac{1}{5}i$D.$-\frac{2}{5}-\frac{1}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|y=log2(3-x)},B={x||2x-1|>1},则A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|x<0或0<x<3}D.{x|x<0或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}({θ为参数})}\right.$,在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{2}x}\\{y'=\frac{1}{{\sqrt{3}}}y}\end{array}}\right.$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点$A(\frac{3}{2},π)$(极坐标)且倾斜角为$\frac{π}{6}$的直线l与曲线C'交于M,N两点,弦MN的中点为P,求$\frac{|AP|}{|AM|•|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a<b<0,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2<abC.a2<b2D.$\frac{1}{a-b}<\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的左焦点F与抛物线y2=-4x的焦点重合,直线x-y+$\frac{\sqrt{2}}{2}$=0与以原点O为圆心,以椭圆的离心率e为半径的圆相切.
(I )求该椭圆C的方程
(II)设点P坐标为(-$\frac{1}{8}$,0),若|PA|=|PB|,求直线AB的方程.

查看答案和解析>>

同步练习册答案