| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{3}$ | C. | 1 | D. | $\sqrt{2}$ |
分析 根据向量坐标运算求得Q点坐标,根据直线的斜率公式,及基本不等式的性质即可求得直线的斜率公式.
解答 解:由抛物线E:y2=2px焦点F($\frac{p}{2}$,0),设P($\frac{{y}_{1}^{2}}{2p}$,y1),y1>0,Q(x,y),
由$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,则(x,y)=$\frac{2}{3}$($\frac{{y}_{1}^{2}}{2p}$,y1)+$\frac{1}{3}$($\frac{p}{2}$,0),
$\left\{\begin{array}{l}{x=\frac{{y}_{1}^{2}}{3p}+\frac{p}{6}}\\{y=\frac{2}{3}{y}_{1}}\end{array}\right.$,
则直线OQ的斜率k,则$\frac{1}{k}$=$\frac{x}{y}$=$\frac{\frac{{y}_{1}^{2}}{3p}+\frac{p}{6}}{\frac{2}{3}{y}_{1}}$=$\frac{2{y}_{1}^{2}+{p}^{2}}{4{y}_{1}p}$≥$\frac{2\sqrt{2}{y}_{1}p}{4{y}_{1}p}$=$\frac{\sqrt{2}}{2}$,
当且仅当$\sqrt{2}$y1=p,取等号,
∴k≤$\sqrt{2}$,
∴直线 OQ的斜率的最大值$\sqrt{2}$,
故选D.
点评 本题考查向量的坐标运算,直线的斜率公式,基本不等式的性质,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{2}{5}+\frac{1}{5}i$ | B. | $\frac{2}{5}-\frac{1}{5}i$ | C. | $\frac{2}{5}+\frac{1}{5}i$ | D. | $-\frac{2}{5}-\frac{1}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x<3} | B. | {x|-1<x<3} | C. | {x|x<0或0<x<3} | D. | {x|x<0或1<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}<\frac{1}{b}$ | B. | a2<ab | C. | a2<b2 | D. | $\frac{1}{a-b}<\frac{1}{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com