精英家教网 > 高中数学 > 题目详情
已知函数y=
1
2
cos2x+
3
2
sinx•cosx+1(x∈R).   
(1)求y的最大值及此时的x的值的集合;    
(2)该函数图象可由y=sinx的图象经过怎样的平移和伸缩变换得到?
分析:(1)利用二倍角公式、两角和的正弦函数化简函数为 一个角的三角函数的形式,即可求出函数的最大值,以及x 的值.
(2)该函数图象可由y=sinx的图象,按照向左平移,横向伸缩,纵向伸缩,上下平移的方法,即可得到函数的解析式.
解答:解:(1)y=
1
2
cos2x+
3
2
sinx•cosx+1
=
1
4
(1+cos2x)+
3
4
sin2x+1

=
1
2
sin(2x+
π
6
) +
5
4

所以ymax=
7
4
,此时x的集合是{x|x=kπ+
π
6
,k∈Z}

(2)函数图象可由y=sinx的图象经过向左平移
π
6
单位,横向缩短到原来的
1
2
,纵坐标不变,纵向缩短到原来的
1
2
,横坐标不变,然后把函数的图象向上平移
5
4
单位,即可得到函数y=
1
2
sin(2x+
π
6
) +
5
4
的图象.
点评:本题是中档题,考查三角函数的化简求值,牢记三角函数的公式,在解题时才能灵活应用,函数图象的变换注意x 的系数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为[-1,3],则函数y=f(2x+1)的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(?x+φ)在同一周期内,当x=
π
3
时有最大值2,当x=0时有最小值-2,那么函数的解析式为
y=2sin(3x-
π
2
)
y=2sin(3x-
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
3-4x+x2
+lg(
2+x
2-x
)
的定义域为M,
(1)求M;
(2)当x∈M时,求f(x)=4x-2x+1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且f(2)=0,对任意x∈R,都有f(x+4)=f(x)+f(4)成立,则f(2008)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2
sin(2x+θ)
是偶函数,则θ的一个值是(  )

查看答案和解析>>

同步练习册答案