精英家教网 > 高中数学 > 题目详情
P为椭圆
x2
a2
+
y2
b2
=1
上一点,F1,F2为其左右焦点,PA为∠F1PF2的外角平分线且F2M⊥PA,垂足为 M,则M点的轨迹图形为(  )
A.圆B.椭圆C.双曲线D.抛物线
设F2M的延长线与F1P的延长线交于Q,
∵PA为∠F1PF2的外角平分线且F2M⊥PA,垂足为 M,
∴△QPF2是等腰三角形,两腰分别为PF2和PQ
∴QP=PF2 而F1P+F2P=2a,且QP=PF2∴PQ+PF1=2a 由于O为F1F2中点,M为QF2中点在△QPF2中,OM是中位线 故OM=a 由于a是定值,那么OM也是定值∴O是定点,动点到定点的距离为定值则该动点的运动轨迹为圆(半径为a)
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义以原点为圆心,以
a2+b2
为半径的圆O为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的“准圆”.已知椭圆C:
x2
a2
+
y2
b2
=1
的离心率为
3
3
,直线l:2x-y+5=0与椭圆C的“准圆”相切.
(1)求椭圆C的方程;
(2)P为椭圆C的右准线上一点,过点P作椭圆C的“准圆”的切线段PQ,点F为椭圆C的右焦点,求证:|PQ|=|PF|
(3)过点M(-
6
5
,0)
的直线与椭圆C交于A,B两点,为Q椭圆C的左顶点,是否存在直线l使得△QAB为直角三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足
RP
=-2
PF
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使
SP
2
取最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦点分别为F1(-c,0),F2(c,0),且a、b、c成等比数列.
(1)求随圆c的离心率e;
(2)若P为椭圆c上一点,是否存在过点F2、P的直线l,使l与y轴的交点Q满足
PQ
=2
PF2
?若存在,求直线l的斜率k;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案