精英家教网 > 高中数学 > 题目详情

函数f(x)=2(log2x)2+a·log2x-2+b,在x=时有最小值1,试确定a,b的值.

答案:
解析:


提示:

  将求指数函数、对数函数的最大值、最小值问题,转化为求二次函数的最大值、最小值,是解这种问题的一个基本方法.

  解最值问题一定要注意转化思想的运用.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.

(1)如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,求实数m的取值范围.

(2)如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x-16,

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.

(1)求使直线l和y=f(x)相切且以P为切点的直线方程;

(2)求使直线l和y=f(x)相切且切点异于P的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

同步练习册答案