精英家教网 > 高中数学 > 题目详情

过点P(1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.

直线方程为2x+y-6=0。


解析:

设所求直线L的方程为:

     ∵直线L经过点P(1,4)

     ∴       

     ∴ 

    当 且仅当  即a=3,b=6时a+b有最小値为9,此时所求直线方程为2x+y-6=0。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax-
2
x
-3lnx,其中a为常数.
(Ⅰ)当函数f(x)的图象在点(
2
3
,f(
2
3
))处的切线的斜率为1时,求函数f(x)在[
3
2
,3]上的最小值;
(Ⅱ)若函数f(x)在(0,+∞)上既有极大值又有极小值,求实数a的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求这些切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(-1,4)作圆C:(x-1)2+y2=4的切线,则切线方程为
3x-4y-13=0或x=-1
3x-4y-13=0或x=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点,
①△ABO的面积为S,求S的最小值并求此时直线l的方程;
②当|OA|+|OB|最小时,求此时直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,4)作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.

查看答案和解析>>

同步练习册答案