精英家教网 > 高中数学 > 题目详情
(2013•合肥二模)已知函数f(x)的图象与函数h(x)=x+
1x
+2的图象关于点A(0,1)对称.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)=x2•[f(x)-a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.
分析:(I)先设f(x)的图象上任一点P(x,y),再由点点对称求出对称的坐标,由题意把对称点的坐标代入h(x)的解析式,进行整理即可;
(II)由(I)求出g(x)的解析式,再求出导数,将条件转化为:3x2-2ax+1≥0在区间[1,2]上恒成立,再分离出常数a,利用函数y=3x+
1
x
在区间[1,2]上的单调性求出函数的最小值,再求出a的范围.
解答:解:(I)设f(x)的图象上任一点P(x,y),
则点P关于点A(0,1)对称P′(-x,2-y)在h(x)的图象上,
∴2-y=-x-
1
x
+2,得y=x+
1
x
,即f(x)=x+
1
x

(II)由(I)得,g(x)=x2•[f(x)-a]=x2•[x+
1
x
-a]=x3-ax2+x,
则g′(x)=3x2-2ax+1,
∵g(x)在区间[1,2]上为增函数,
∴3x2-2ax+1≥0在区间[1,2]上恒成立,
即a≤
1
2
3x+
1
x
)在区间[1,2]上恒成立,
∵y=3x+
1
x
在区间[1,2]上递增,故此函数的最小值为y=4,
则a≤
1
2
×
4=2.
点评:本题考查了利用轨迹法求函数解析式,导数与函数单调性、最值问题,以及恒成立问题,考查了转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•合肥二模)已知i是虚数单位,则复数
-2+i
1+i
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)点(x,y)满足
x+y-1≥0
x-y+1≥0
x≤a
,若目标函数z=x-2y的最大值为1,则实数a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)定义域为R的奇函数f(x )的图象关于直线.x=1对称,当x∈[0,1]时,f(x)=x,方程 f(x)=log2013x实数根的个数为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)在锐角△ABC 中,角 A,B,C 所对边分别为 a,b,c,且 bsinAcosB=(2c-b)sinBcosA.
(I)求角A;
(II)已知向量
m
=(sinB,cosB),
n
=(cos2C,sin2C),求|
m
+
n
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0),作倾斜角为
π
6
的直线FE交该双曲线右支于点P,若
OE
=
1
2
OF
+
OP
),且
OE
EF
=0则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案