精英家教网 > 高中数学 > 题目详情
如图,BD是⊙O的直径,E是⊙O上的一点,直线AE交BD的延长线于A点,BC⊥AE于C点,AC是⊙O的切线.求证:∠CBE=∠DBE.

证明:连结OE,由OE=OB,得∠OEB=∠OBE.

∵AC是⊙O的切线,∴OE⊥AC.

又BC⊥AE,∴OE∥BC.

∴∠CBE=∠OEB.∴∠CBE=∠DBE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直-棱柱ABO-A′B′O′中,OO′=4,OA=4,OB=3,∠AOB=90°,D是线段A′B′的中点,P是侧棱BB′上的一点,若OP⊥BD,求OP与底面AOB所成角的大小(结果用反三角函数值表示)
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,则二面角O1-BC-D的大小为
60°
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以正三角形ABC为底面的直棱柱被平面 DEF所截而得.AB=2,BD=1,CE=3,AF=a,O为AB的中点.
(1)当a=4时,求平面DEF与平面ABC的夹角的余弦值;
(2)当a为何值时,在棱DE上存在点P,使CP⊥平面DEF?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4的菱形,且∠DAB=60°,AC∩BD=O,A1C1∩B1D1=O1
(1)求证:平面O1AC⊥平面O1BD;
(2)求二面角O1-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱A1B1C1D1-ABCD的高为3,底面是边长为4,且∠DAB=60°的菱形,O是AC与BD的交点,O1是A1C1与B1D1的交点.
(I) 求二面角O1-BC-D的大小;
(II) 求点A到平面O1BC的距离.

查看答案和解析>>

同步练习册答案