精英家教网 > 高中数学 > 题目详情
已知=(cosθ,sinθ),=(1+sinθ,1+cosθ),其中0≤θ≤π,求||的取值范围.

解:∵=-=(1+sinθ,1+cosθ)-(cosθ,sinθ)

=(1+sinθ-cosθ,1+cosθ-sinθ),

∴||2=(1+sinθ-cosθ)2+(1+cosθ-sinθ)2

=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2

=2+2(sinθ-cosθ)2=2+2(1-2sinθcosθ)

=4-4sinθcosθ=4-2sin2θ.

∵0≤θ≤π,∴0≤2θ≤2π.

从而-1≤sin2θ≤1.

∴4-2sin2θ∈[2,6].

故||的取值范围是[,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=
a
=(cosα,sinα)
OC
=
c
=(0,2)
OB
=
b
=(2cosβ,2sinβ)
,其中O为坐标原点,且0<α<
π
2
<β<π
(1)若
a
⊥(
b
-
a
)
,求β-α的值;
(2)若
OB
OC
=2,
OA
OC
=
3
,求△OAB的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为an=2n-1,已知函数f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函数f(x)的最小正周期和最大值;
(Ⅱ)若函数f(x)在x=
π
6
处取得最大值,且
AB
AC
=2
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:专项题 题型:解答题

(Ⅰ)①证明两角和的余弦公式C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;
②由C(α+β)推导两角和的正弦公式S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;
(Ⅱ)已知cosα=,α∈,tanβ=,β∈,求cos(α+β)。

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)①证明:两角和的余弦公式C(αβ):cos(αβ)=cos αcos β-sin αsin β

②由C(αβ)推导两角和的正弦公式S(αβ):sin(αβ)=sin αcos β+cos αsin β.

(2)已知cos α=-α∈(π,π),tan β=-β∈(,π),求cos(αβ).

查看答案和解析>>

同步练习册答案