科目:高中数学 来源:重难点手册 高中数学·必修4(配人教A版新课标) 人教A版新课标 题型:044
设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α、β为何实数,恒有f(sinα)≥0和f(2+cosβ)≤0.
(1)求证:b+c=-1;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b、c的值.
查看答案和解析>>
科目:高中数学 来源:江苏金练·高中数学、全解全练、数学必修4 题型:044
已知y=sinx的图象,经过怎样的变换可以得到下列各函数的图象(A>0,m≠0).
(1)y=sin(x+m)
(2)y=sinx+m
(3)y=Asinx
(4)y=sinAx
(5)y=-sinx
(6)y=sin(-x)
(7)y=|sinx|
(8)y=sin|x|
查看答案和解析>>
科目:高中数学 来源:学习周报 数学 北师大课标高二版(必修5) 2009-2010学年 第11期 总第167期 北师大课标版(必修5) 题型:013
已知
在第二象限,
m<-5,或m>3
3<m<9
m=0,或m=8
m=0
查看答案和解析>>
科目:高中数学 来源:广东省广州市2012届高三第一次模拟考试数学文科试题 题型:013
已知两个非零向量
与
,定义|a×b|=|a||b|sin
,其中
为
与
的夹角.若
=(-3,4),
=(0,2),则|a×b|的值为
A.-8
B.-6
C.6
D.8
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一第二学期期中考试数学试卷(解析版) 题型:解答题
已知函数f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二问中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴当2x-
=-
,即x=0时,f(x)min=-
,
当2x-
=
,
即x=
时,f(x)max=1
第三问中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用构造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的减区间是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴当2x-
=-
,即x=0时,f(x)min=-
, ……………………8分
当2x-
=
,
即x=
时,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com