精英家教网 > 高中数学 > 题目详情
F为抛物线y2=2px(p>0)的焦点,过F作直线交抛物线于A、B两点,记△AOB的面积为S,线段AB的长为l,试证为定值.

证明:设过焦点的直线与抛物线交于A(x1,y1)、B(x2,y2).

(1)若AB不与x轴垂直,则可设AB的方程为y=k(x-)(k≠0).

得k2x2-p(k2+2)x+=0,

∴x1+x2=.

又|AF|=x1+,|BF|=x2+,

∴l=|AB|=x1+x2+p=.

设O到AB的距离为d,d=,

(定值).

(2)若AB与x轴垂直,则l=2p,d=,

(定值).


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M是抛物线y2=2px(p>0)位于第一象限部分上的一点,且点M与焦点F的距离|MF|=2p,则点M的坐标为(  )
A、(
3p
2
3
p)
B、(
3p
2
-
3
p)
C、(
3p
2
±
3
p)
D、(
3
p,
3p
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为
π4
的直线与抛物线相交于A、B两点.
(1)求直线AB的方程;
(2)试用p表示A、B之间的距离;
(3)当p=2时,求∠AOB的余弦值.
参考公式:(xA2+yA2)(xB2+yB2)=xAxB[xAxB+2p(xA+xB)+4p2].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)F是抛物线y2=2px(p>0)的焦点,过焦点F且倾斜角为θ的直线交抛物线于A,B两点,设|AF|=a,|BF|=b,则:
①若θ=60°且a>b,则
a
b
的值为
3
3
;②a+b=
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
(用p和θ表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州二模)抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左顶点,点M为这两条曲线的一个交点,且|MF|=2p,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案