精英家教网 > 高中数学 > 题目详情

(Ⅰ)一动圆与圆F1x2+y2+6x+6=0相外切,与圆F2x2+y2-6x-18=0相内切求动圆圆心的轨迹曲线E的方程,并说明它是什么曲线.

(Ⅱ)过点(-3,0)作一直线l与曲线E交与A,B两点,若,求此时直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
,离心率为
1
2
,F1,F2分别为其左右焦点,椭圆上点P到F1与F2距离之和为4,
(1)求椭圆C1方程.
(2)若一动圆过F2且与直线x=-1相切,求动圆圆心轨迹C方程.
(3)在(2)轨迹C上有两点M,N,椭圆C1上有两点P,Q,满足
MF2
NF2
共线,
PF2
QF2
共线,且
PF2
MF2
=0,求四边形PMQN面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0)、F2(1,0),圆F2:(x-1)2+y2=1,一动圆在y轴右侧与y轴相切,同时与圆F2相外切,此动圆的圆心轨迹为曲线C,曲线E是以F1,F2为焦点的椭圆.
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且|PF1|=
73
,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线l与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)一动圆与圆F1:x2+y2+6x+6=0相外切,与圆F2:x2+y2-6x-18=0相内切求动圆圆心的轨迹曲线E的方程,并说明它是什么曲线.
(Ⅱ)过点(-3,0)作一直线l与曲线E交与A,B两点,若|AB|=
8
5
3
,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0),O为坐标原点,
(1)椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0)过M(2,
2
),N(
6
,1)两点,求椭圆E的方程;
(2)若a>b>0,两个焦点为 F1(-c,0),F2(c,0),M为椭圆上一动点,且满足
F1M
F2M
=0,求椭圆离心率的范围.
(3)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
OA
OB
?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆
x2
4
+
y2
3
=1
的左、右焦点,A是椭圆上一动点,圆C与F1A的延长线、F1F2的延长线以及线段AF2相切,若M(t,0)为一个切点,则(  )

查看答案和解析>>

同步练习册答案