精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCDA1B1C1D1中,EAB的中点.

(1)求ADB1C所成的角;

(2)证明平面EB1D⊥平面B1CD;

(3)求二面角EB1CD的大小(用反三角函数表示)

解法一:(1)解:正方体ABCDA1B1C1D1中,ADBC,?

ADB1C所成的角为∠B1CB或其补角.2分?

∵∠B1CB=45°,∴ADB1C所成的角为45°.                                                           ?

(2)证明:取B1C的中点F,B1D的中点G,

连结BF,EG,GF.?

CD⊥平面BCC1B1,?

DCBF.?

BFB1C,DCB1C=C,?

BF⊥平面B1CD.                                                                                                         ?

GF CD,BECD,??

BEGF.∴四边形BFGE是平行四边形.?

BFGE.∴EG⊥平面B1CD.                                                                                ?

EG平面EB1D,?

∴平面EB1D⊥平面B1CD.                                                                                      ?

(3)解:连结EF.

CDB1C,GFCD,∴GFB1C.?

EG⊥平面B1CD,EFB1C,?

∴∠EFG为二面角E-B1C-D的平面角.                                                                    ?

设正方体的棱长为a,则在△EFG中,?

GF=a,EF=a,

∴cos∠EFG==.                                                                                       

∴二面角E-B1C-D的大小为arccos.                                                                  ?

解法二:不妨设正方体的棱长为2个长度单位,?

且设=i,=j,=k.?

i,j,k为坐标向量建立如图所示的空间直角坐标系Dxyz.??

(1)解:∵D(0,0,0),A(2,0,0),C(0,2,0),B1(2,2,2),?

=(2,0,0),=(2,0,2),                                                                            ?

cos〈,〉===.?

ADB1C所成的角为45°.                                                                                  ?

(2)证明:取B1D的中点F,连结EF.∵F(1,1,1),E(2,1,0),?

=(-1,0,1),=(0,2,0),=0, =0.?                              ?

EFCD,EFCB1.?

CDCB1相交,∴EF⊥平面B1CD.                                                                             ?

EF平面EB1D,∴平面EB1D⊥平面B1CD.                                                               ?

(3)解:设平面B1CD的法向量M=(1,a,B),?

?

解得c=0,B=-1,∴M=(1,0,-1).                                                                                   ?

设平面EB1C的法向量n=(-1,c,D).?

解得c=-2,D=1,∴n=(-1,-2,1).                                                                                   ?

∴cos〈m,n〉===-.                                                                   ?

∴二面角EB1CD的大小为arccos.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案