精英家教网 > 高中数学 > 题目详情
已知ax2+2x+c>0的解为<x<,则a+c等于(    )

A.10                B.-10                  C.14              D.-14

解析:解为<x<的不等式是(x)(x+)<0,即x2-x-<0,两边同乘以-12,得-12x2+2x+2>0.

此不等式与ax2+2x+c>0同解,将这两个不等式比较对应项系数得a=-12,c=2,所以a+c=-10.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则
a+1
c
+
c+1
a
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+2x+c的值域是[0,+∞),那么
c
a2+1
+
a
c2+1
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+2x+c与x轴的两个不同的交点都在原点右侧,则点M(a,c)在第
 象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)设g(x)=f(x+b),是否存在实数b使g(x)为偶函数;若存在,求出b的值;若不存在,说明理由;
(3)设h(x)=f(x)-x2+m,若函数y=logmh(x)在区间[-2,4]上单调递增,求实数m的取值范围;
(4)设函数h(x)=log2[n-f(x)],讨论此函数在定义域范围内的零点个数.

查看答案和解析>>

同步练习册答案