精英家教网 > 高中数学 > 题目详情

是函数mÎ R的零点,求的最小值.

答案:略
解析:

是函数,的零点,

是方程的根,

因此

m1m3

m1m3

∴结合图象,可得m=1时,取得最小值2


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

20、已知每项均是正整数的数列a1,a2,a3,…a100,其中等于i的项有ki个(i=1,2,3…),设bj=k1+k2+…kj(j=1,2,3…),
g(m)=b1+b2+…bm-100m(m=1,2,3…).
(Ⅰ)设数列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,求g(1),g(2),g(3),g(4);
(II) 若 a1,a2,a3,…,a100中最大的项为50,比较g(m),g(m+1)的大小;
(Ⅲ)若a1+a2+…a100=200,求函数g(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=
x2-8x+20
+
x2+1
的最小值为5;
②若直线y=kx+1与曲线y=|x|有两个交点,则k的取值范围是-1≤k≤1;
③若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2
2
,则m的倾斜角可以是15°或75°
④设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列
⑤设△ABC的内角A.B.C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA则sinA:sinB:sinC为6:5:4
其中所有正确命题的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]本题包括A、B、C、D共4小题,请从这4小题中选做2小题,每小题10分,共20分.
A.如图,AD是∠BAD的角平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E、F两点.求证:EF∥BC.
B.已知M=
.
1-2
3-7
.
,求M-1
C.已知直线l的极坐标方程为θ=
π
4
(ρ∈R),它与曲线C
x=1+2cosα
y=2+2sinα
(α为参数)相较于A、B两点,求AB的长.
D.设函数f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)对任意a,b∈R,且a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+ln(2-x)+ax(a>0)
(1)当a=
π
2
0
(cos2
x
2
-sin2
x
2
)dx
时,若f(x)在(0,m]上是单调函数,求m的取值范围;
(2)若f(x)在(0,1]上的最大值为
1
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

同步练习册答案