精英家教网 > 高中数学 > 题目详情

求圆心在直线x+y=0上,且过两圆x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0的交点的圆的方程.

圆的方程为(x+3)2+(y-3)2=10.


解析:

解方程组得交点坐标分别为(0,2),(-4,0).

设所求圆的圆心坐标为(a,-a),

.

解得a=-3,.

因此,圆的方程为(x+3)2+(y-3)2=10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求圆心在直线x+y=0上,且过两圆x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0交点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆心在直线x+y=0上,且过A(-4,0),B(0,2)两点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆心在直线x-y-4=0上,并且经过圆x2+y2+6x-4=0与圆x2+y2+6y-28=0的交点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆心在直线x-y+1=0上,且经过圆x2+y2+6x-4=0与圆x2+y2+6y-28=0的交点的圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆心在直线x-y-4=0上,并且经过C1x2+y2+2x+8y-8=0和圆C2x2+y2-4x-4y-2=0的交点的圆的方程.

查看答案和解析>>

同步练习册答案