精英家教网 > 高中数学 > 题目详情

定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新不动点”,如果函数数学公式(x∈(0,+∞)),h(x)=sinx+2cosxx∈(0,π),φ(x)=e1-x-2的“新不动点”分别为α,β,γ,那么α,β,γ的大小关系是


  1. A.
    α<β<γ
  2. B.
    α<γ<β
  3. C.
    γ<α<β
  4. D.
    β<α<γ
C
分析:由题设中所给的定义,方程f(x)=f'(x)的实数根x0叫做函数f(x)的“新驻点”,对三个函数所对应的方程进行研究,分别计算求出α,β,γ的值或存在的大致范围,再比较出它们的大小即可选出正确选项
解答:由题意方程f(x)=f'(x)的实数根x0叫做函数f(x)的“新驻点”,x>0
对于函数g(x)=(x>0),由于g′(x)=x,由可得x=2,即α=2
对于函数h(x)=sinx+2cosx(0<x<π),
由于h′(x)=cosx-2sinx,题意可得sinx+2cosx=cosx-2sinx,即tanx=
∵x∈(0,π),
<β<π
对于函数φ(x)=e1-x-2,由于φ′(x)=-e1-x,可得γ=0
综上γ<α<β
故选C
点评:本题是一个新定义的题,理解定义,分别建立方程解出α,β,γ的值或存在范围是解题的关键,本题考查了推理判断的能力,计算能力属于基本题型
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为(  )
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中数学 来源: 题型:

定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3-lg(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为(  )
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•云南模拟)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,如果函数g(x)=x,h(x)=lnx,φ(x)=cosx(x∈(
π
2
,π))的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=2x,h(x)=lnx,φ(x)=x3(x≠0)的“新驻点”分别为a,b,c,则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义方程f(x)=f′(x)(f′(x)是f(x)的导函数)的实数根x0叫做函数的f(x)“新驻点”,若函数g(x)=x,r(x)=ln(x+1),φ(x)=x3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为(  )
A、α>β>γB、β>α>γC、β>γ>αD、γ>α>β

查看答案和解析>>

同步练习册答案