精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x28
-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
分析:(1)直接求出函数的导数,通过导数为0,求出函数的极值点,判断函数的单调性,利用最值定理求出f(x)的最大值与最小值;
(2)利用(1)的结论,f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,转化为4-at>
1
8
对任意t∈[0,2]恒成立,通过
g(0)<
31
8
g(2)<
31
8
,求实数a的取值范围.
解答:解:(1)因为函数f(x)=
x2
8
-lnx,
所以f′(x)=
x
4
-
1
x
,令f′(x)=0得x=±2,
因为x∈[1,3],
 当1<x<2时  f′(x)<0;当2<x<3时,f′(x)>0;
∴f(x)在(1,2)上单调减函数,在(2,3)上单调增函数,
∴f(x)在x=2处取得极小值f(2)=
1
2
-ln2;
 又f(1)=
1
8
,f(3)=
9
8
-ln3

∵ln3>1∴
1
8
-(
9
8
-ln3)=ln3-1>0

∴f(1)>f(3),
∴x=1时 f(x)的最大值为
1
8

x=2时函数取得最小值为
1
2
-ln2.
(2)由(1)知当x∈[1,3]时,f(x)
1
8

故对任意x∈[1,3],f(x)<4-at恒成立,
只要4-at>
1
8
对任意t∈[0,2]恒成立,即at
31
8
恒成立
记 g(t)=at,t∈[0,2]
g(0)<
31
8
g(2)<
31
8
,解得a
31
16

∴实数a的取值范围是(-∞,
31
16
).
点评:本题考查函数与导数的关系,函数的单调性的应用,考查函数的导数在闭区间上的最值的求法,考查计算能力,恒成立问题的应用,考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案