精英家教网 > 高中数学 > 题目详情
若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
则z=x+2y的最大值是
2
2
分析:先根据约束条件画出可行域,再利用几何意义求最值,z=x+2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.
解答:解:满足题中约束条件的可行域如图所示.
目标函数z=x+2y取得最大值,
即使得函数y=-
1
2
x+
z
2
在y轴上的截距最大.
结合可行域范围知,当其过点P(0,1)时,Zmax=0+2×1=2.
故答案为:2.
点评:本题考查简单线性规划,解题的重点是作出正确的约束条件对应的区域,根据目标函数的形式及图象作出正确判断找出最优解,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足
x-y-2≤0
x+2y-5≥0
y-2≤0
则M=x+y
的最小值是(  )
A、
1
3
B、2
C、3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y满足
(x-y+6)(x+y-6)≥0
1≤x≤4
,则
y
x
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x-y+1≤0
x≤0
,则x2+y2的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•衢州一模)若实数x,y满足
x+y-2≥0
x≤4
y≤5
,则s=y-x的最大值是
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)若实数x,y满足
x≤1
y≥0
x-y≥0
,则x+y的取值范围是(  )

查看答案和解析>>

同步练习册答案