精英家教网 > 高中数学 > 题目详情
10.设实数x、y满足2x+y=9.
(1)若|8-y|≤x+3,求x的取值范围;
(2)若x>0,y>0,求证:$\frac{x+8y}{2xy}$≥$\frac{25}{18}$.

分析 (1)消去y,得到关于x的不等式,求出x的范围即可;(2)根据基本不等式的性质证明即可.

解答 解:(1)∵2x+y=9,
∴由|8-y|<x+3,得|2x-1|<x+3,
则-x-3<2x-1<x+3,
即$\left\{\begin{array}{l}{2x-1<x+3}\\{2x-1>-x-3}\end{array}\right.$,
解得:-$\frac{2}{3}$<x<4;
(2)证明:∵2x+y=9,x>0,y>0,
∴$\frac{x+8y}{2xy}$=$\frac{4}{x}$+$\frac{1}{2y}$=$\frac{1}{9}$(2x+y)($\frac{4}{x}$+$\frac{1}{2y}$)=$\frac{1}{9}$[$\frac{17}{2}$+($\frac{4y}{x}$+$\frac{x}{y}$)],
∵$\frac{4y}{x}$+$\frac{x}{y}$≥4,当且仅当x=2y=$\frac{18}{5}$时“=”成立,
∴$\frac{x+8y}{2xy}$≥$\frac{1}{9}$×($\frac{17}{2}$+4)=$\frac{25}{18}$.

点评 本题考查了绝对值不等式问题,考查基本不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-m|+|x|(m∈R)
(1)若f(1)=1,解关于x的不等式f(x)<2
(2)若f(x)≥m2对任意实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某超市连锁店统计了城市甲、乙的各16台自动售货机在中午12:00至13:00间的销售金额,并用茎叶图表示如图.则有(  )
A.甲城销售额多,乙城不够稳定B.甲城销售额多,乙城稳定
C.乙城销售额多,甲城稳定D.乙城销售额多,甲城不够稳定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}各项的绝对值均为1,Sn为其前n项和.若S7=3,则该数列{an}的前七项的可能性有(  )种.
A.10B.20C.21D.42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组
的频率之比为1:2:3,第1小组的频数为6,则报考飞行员的学生人数是(  )
A.32B.40C.48D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.-7<a<24B.-24<a<7C.a<-1或a>24D.a<-24或a>7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y满足如图所示的可行域(阴影部分),则$z=\frac{1}{2}x-y$的最大值为(  )
A.$\frac{1}{2}$B.0C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=2x2+bx+c,不等式f(x)<0的解集为(0,5).
(1)求b,c的值;
(2)若对任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a<b<0,则下列不等式成立的是(  )
A.a2<b2B.ab<b2C.ab>a2D.$a-\frac{1}{a}<b-\frac{1}{b}$

查看答案和解析>>

同步练习册答案