精英家教网 > 高中数学 > 题目详情
23-2x<(
12
)x2-6
,则x的取值集合为
(-1,3)
(-1,3)
分析:由于 23-2x<(
1
2
)x2-6
=26-x2,可得 3-2x<6-x2,由此求得x的取值集合.
解答:解:由于 23-2x<(
1
2
)x2-6
=26-x2,则有 3-2x<6-x2,即 x2-2x-3<0,
解得-1<x<3,
故答案为 (-1,3).
点评:本题主要考查指数不等式的解法,指数函数的单调性和特殊点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,f(x)为奇函数,且f(2x)=
a•4x-a-2
4x+1

(1)试求f(x)的反函数f-1(x)的解析式及f-1(x)的定义域;
(2)设g(x)=log
2
1+x
k
,是否存在实数k,使得对于任意的x∈[
1
2
2
3
]
,f-1(x)≤g(x)恒成立,如果存在,求实数k的取值范围.如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-a
2x+1
(a∈R)是奇函数.
(1)求a的值;
(2)求函数F(x)=f(x)+2x-
4
2x+1
-1的零点;
(3)设g(x)=log4
k+x
1-x
,若方程f-1(x)=g(x)在x∈[
1
2
2
3
]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)设a∈R,f(x)=
a•2x-a-2
2x+1
为奇函数.
(1)求实数a的值;
(2)设g(x)=2log2
1+x
k
),若不等式f-1(x)≤g(x)在区间[
1
2
2
3
]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为-
1
2

②关于x的不等式(a-3)x2<(4a-2)x对任意的a∈(0,1)恒成立,则x的取值范围是(-∞,-1]∪[
2
3
,+∞)

③变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则r2<0<r1
④下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x 3 4 5 6
y 2.5 3 4 4.5
根据上表提供的数据,得出y关于x的线性回归方程为y=a+0.7x,则a=-0.35;
以上命题正确的个数是(  )

查看答案和解析>>

同步练习册答案