精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式 (x∈Z).给出以下三个判断:①f(x)为偶函数;②f(x)为周期函数;③f(x+1)+f(x)=1.
其中正确判断的序号是________(填写所有正确判断的序号).

①②③
分析:由题意可得,f(x)==,检验f(-x)=f(x),即可判断①
由于f(x)的函数值是1,0交替出现,故函数是以2为周期的周期函数,可判断②
由于x+1,x中必定一个是奇数,一个是偶数,则f(x+1)与f(x)的值一个是1,一个是0,可判断③
解答:∵f(x)==
∴f(-x)====f(x),故f(x)为偶函数,①正确
由于f(x)的函数值是1,0交替出现,故函数是以2为周期的周期函数,②正确
由于x+1,x中必定一个是奇数,一个是偶数,则f(x+1)与f(x)的值一个是1,一个是0,则f(x+1)+f(x)=1,③正确
故答案为:①②③
点评:本题主要考查了函数的奇偶性的定义、周期性的定义的应用,解题的关键是对已知函数的化简
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn与通项an满足Sn=
1
2
(1-an).
(1)求数列{an}的通项公式;
(2)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求Tn=
1
b1
+
1
b2
+
1
b3
+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1  (x>0)
-1(x<0)
,则不等式xf(x)+x≤4的解集是
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-1,当自变量x由1变到1.1时,函数的平均变化率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

查看答案和解析>>

同步练习册答案