精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-4x+(2-a)lnx,(a∈R,a≠0).
(1)当a=8时,求函数f(x)的单调区间;
(2)求函数f(x)在区间[e,e2]上的最小值.
(1)f(x)=x2-4x-6lnx,f'(x)=2x-4-
6
x
=
2(x+1)(x-3)
x
,(2分)
由f'(x)>0得(x+1)(x-3)>0,
解得x>3或x<-1.
注意到x>0,所以函数f(x)的单调递增区间是(3,+∞).
由f'(x)<0得(x+1)(x-3)<0,
解得-1<x<3,
注意到x>0,所以函数f(x)的单调递减区间是(0,3).
综上所述,函数f(x)的单调递增区间是(3,+∞),单调递减区间是(0,3).(6分)
(2)当x∈[e,e2]时,f(x)=x2-4x+(2-a)lnx,
所以f'(x)=2x-4+
2-a
x
=
2x2-4x+2-a
x

设g(x)=2x2-4x+2-a.
①当a≤0时,有△=16-4×2(2-a)=8a≤0
所以f'(x)≥0,f(x)在[e,e2]上单调递增.
所以f(x)min=f(e)=e2-4e+2-a(8分)
②当a>0时,△=16-4×2(2-a)=8a>0,
令f'(x)>0,即2x2-4x+2-a>0,解得x>1+
2a
2
或x<1-
2a
2
(舍);
令f'(x)<0,即2x2-4x+2-a<0,解得1-
2a
2
<x<1+
2a
2

10若1+
2a
2
e2
,即a≥2(e2-1)2时,f(x)在区间[e,e2]单调递减,
所以f(x)min=f(e2)=e4-4e2+4-2a.
20若e<1+
2a
2
e2
,即2(e-1)2<a<2(e2-1)2时,f(x)在区间[e,1+
2a
2
]
上单调递减,
在区间[1+
2a
2
e2]
上单调递增,所以f(x)min=f(1+
2a
2
)=
a
2
-
2a
-3+(2-a)ln(1+
2a
2
)

30若1+
2a
2
≤e,即0<a≤2(e-1)2时,f(x)在区间[e,e2]单调递增,
所以f(x)min=f(e)=e2-4e+2-a.(14分)
综上所述,
当a≥2(e2-1)2时,f(x)min=e4-4e2+4-2a;
当2(e-1)2<a<2(e2-1)2时,f(x)min=
a
2
-
2a
-3+(2-a)ln(1+
2a
2
)

当a≤2(e-1)2时,f(x)min=e2-4e+2-a.(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案