精英家教网 > 高中数学 > 题目详情

已知集合,求使的实数a的取值范围


解析:

的充要条件是方程组  有解

(I)至少有一个非负根

(I)有根的前提是 

设(I)有两个负根y1, y2,则

  故有 

则(I)至少有一个非负根的充要条件是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2
(1)求f(x)在Ik上的解析表达式;
(2)对自然数k,求集合Mk={a|使方程f(x)=ax在Ik上有两个不等的实根}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1.
(1)是否有这样的实数值m,使得此椭圆上存在两点关于直线y=2x+m对称?如果存在,求出m的值或取值范围;如果没有,试说明理由.
(2)若直线为y=kx+m,能使得此椭圆上存在两点关于直线y=kx+m对称的m的值的集合为M,要使M⊆(-
1
3
1
3
),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-4x+3|.
(1)求函数f(x)的单调区间,并指出其增减性;
(2)求集合M={m|m使方程f(x)=m有四个不相等的实根}.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省惠州一中高一(上)第二次月考数学试卷(解析版) 题型:解答题

设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I时,f(x)=x2
(1)求f(x)在Ik上的解析表达式;
(2)对自然数k,求集合Mk={a|使方程f(x)=ax在Ik上有两个不等的实根}

查看答案和解析>>

同步练习册答案