精英家教网 > 高中数学 > 题目详情

画出图1和图2中几何体的三视图(阴影面为视角正面).

答案:
解析:

  画三视图之前,先把几何体的结构弄清楚,仔细观察实物模型,想象从三个角度各看到了什么,进而准确地画出几何体的三视图.

  如图(1)和图(2)所示:


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学用《几何画板》研究椭圆的性质:打开《几何画板》软件,绘制某椭圆C1
x2
a2
+
y2
b2
=1,在椭圆上任意画一个点S,度量点S的坐标(xs,ys),如图1.
(1)拖动点S,发现当xs=
2
时,ys=0;当xs=0时,ys=1,试求椭圆C1的方程;
(2)该同学知圆具有性质:若E为圆O:x2+y2=r2(r>0)的弦AB的中点,则直线AB的斜率kAB与直线OE的斜率kOE的乘积kAB•kOE为定值.该同学在椭圆上构造两个不同的点A、B,并构造直线AB,再构造AB的中点E,经观察得:沿着椭圆C1,无论怎样拖动点A、B,椭圆也具有此性质.类比圆的这个性质,请写出椭圆C1的类似性质,并加以证明;
(3)拖动点A、B的过程中,如图2发现当点A与点B在C1在第一象限中的同一点时,直线AB刚好为C1的切线l,若l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.一般来说,在空间直角坐标系O-xyz中,空间曲面的方程是一个三元方程F(x,y,z)=0.
(Ⅰ)在直角坐标系O-xyz中,求到定点M0(0,2,-1)的距离为3的动点P的轨迹(球面)方程;
(Ⅱ)如图,设空间有一定点F到一定平面α的距离为常数p>0,即|FM|=2,定义曲面C为到定点F与到定平面α的距离相等(|PF|=|PN|)的动点P的轨迹,试建立适当的空间直角坐标系O-xyz,求曲面C的方程;  
(Ⅲ)请类比平面解析几何中对二次曲线的研究,讨论曲面C的几何性质.并在图中通过画出曲面C与各坐标平面的交线(如果存在)或与坐标平面平行的平面的交线(如果必要)表示曲面C的大致图形.画交线时,请用虚线表示被曲面C自身遮挡部分.

查看答案和解析>>

科目:高中数学 来源:2009年上海市闸北区高考数学二模试卷(理科)(解析版) 题型:解答题

和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.一般来说,在空间直角坐标系O-xyz中,空间曲面的方程是一个三元方程F(x,y,z)=0.
(Ⅰ)在直角坐标系O-xyz中,求到定点M(0,2,-1)的距离为3的动点P的轨迹(球面)方程;
(Ⅱ)如图,设空间有一定点F到一定平面α的距离为常数p>0,即|FM|=2,定义曲面C为到定点F与到定平面α的距离相等(|PF|=|PN|)的动点P的轨迹,试建立适当的空间直角坐标系O-xyz,求曲面C的方程;  
(Ⅲ)请类比平面解析几何中对二次曲线的研究,讨论曲面C的几何性质.并在图中通过画出曲面C与各坐标平面的交线(如果存在)或与坐标平面平行的平面的交线(如果必要)表示曲面C的大致图形.画交线时,请用虚线表示被曲面C自身遮挡部分.

查看答案和解析>>

同步练习册答案